
Teaching and learning
with computers

Stefano Penge, may 2022

Part I

Tools in education
● The idea of a "age of gold" of education in which there were a

direct relationship between teacher and pupils, without
mediation, is a false myth

● First of all, teachers are mediators themselves
● Second, there is always a mediation: voice, posture, position

in the space
● Moreover, there are (always) been tools to help and support

teaching

Simple Tools
● Textbooks (read only)
● Blackboards (w/r)
● Copybooks (w/r)
● Maps (read only?)
● Dictionaries (read only?)
● ...

Complex tools
● gramophones and discs
● audio players and recorders
● radio and tv
● computers
● internet
● mobile digital tools
● wearable tools
● …?

 Copyright Stefano Penge CC 4.0 BY/SA 7

CAI
● Computer Aided Instruction
● From the very beginning computers were used to substitute teachers in assessment, in

giving interactive lessons with media
● The PLATO project (Programmed Logic for Automatic Teaching Operations, 1960-2006,

University of Illinois and CDC company) was probably the first time computer were used
systematically to teach and learn

● Behind it there was a behaviouristic theory of learning : learning is just reacting correctly to
a class of stimuli.

● A learning path can be designed in advance for every subject matter
● But students are different and the path should be adapted to everyone
● Here comes the role of Artificial Intelligence

 Copyright Stefano Penge CC 4.0 BY/SA 8

Intelligent Tutoring Systems /1
● ITS are one of the first “applications” of AI (Student, Daniel Bobrow 1964)

but also the model upon which the idea of Cognitive AI was built
● The Lisp Tutor (1983), Parnassus (1989), Auto TUTOR (1999)
● In this vision:

– It is possible to design an explicit model of concepts and relations in a domain (eg.
algebra, computer programming)

– It is possible to build a model of the subset of that domain that lives in the student's
mind

– It is possible to assess the state of this model with quizzes and after this update it
is possible to rearrange subsequent steps

 Copyright Stefano Penge CC 4.0 BY/SA 9

Intelligent Tutoring Systems /2
● Limits:

– It is ok
● with a) adults b) motivated
● in closed and formalized domains

– It is based on a single pedagogical model, a single domain model, a
single student model

● Still nowadays, it stands as a reference for using AI and ICT in
education (see Socratic) or as a polemical target (the end of
teachers)

 Copyright Stefano Penge CC 4.0 BY/SA 10

Part II
Educational software

 Copyright Stefano Penge CC 4.0 BY/SA 11

Educational software
● Nowadays there is a lot of educational software on/ and offline
● We can divide ES in two main categories:

– full functioning environments (https://phet.colorado.edu/it/)
– open environments

● The former are easy to deal with, but are little customizable or
not at all

● The latter are highly customizable, but they are difficult to
understand, at least for absolute beginners

https://phet.colorado.edu/it/

 Copyright Stefano Penge CC 4.0 BY/SA 12

An example: Socratic
● Socratic was born as an app/website where teachers gave support to pupils.
● Then it became a standalone app based on opensource libraries to transform an

image in formal representation of an equation and to solve it showing the steps
● Socratic aim to be a tutor:

– An intelligent tutor accompanying the student and show how to do, gives suggestions
– A tutor that never got tired, available at any moment, in every place, not only in

classrooms and at school time.
● As many other "intelligent" services (search, maps, translation) its final goal is to

become indispensable
● https://youtu.be/vZ1tQZ8glXg

https://youtu.be/vZ1tQZ8glXg

 Copyright Stefano Penge CC 4.0 BY/SA 13

Socratic
3x+6y = 3 + 3y
● Cymath
● Mathpapa
● Wolfram Alpha

 Copyright Stefano Penge CC 4.0 BY/SA 14

Educational languages 1
● Since the very beginning, it was clear that to have the number of "coders" needed, it was necessary to

imagine languages and environments much more simpler that those used by the first programmers
● COBOL (1961 COmmon Business-Oriented Language) was the first language aimed not to engineers

but to "normal" people
● BASIC (Beginners' All-purpose Symbolic Instruction Code, 1964) was also aimed to allow everyone to

program without being an engineer
● Pascal (1970) was invented to help young programmers to learn structured programming and to avoid

the nightmare of spaghetti programming
● On one side there were "real" programming languages (like C), powerful, concise (1 instruction = 1

word), with complex and flexible syntax
● On the other side there were languages more verbose (1 instruction = many words), with terms easy to

remember, with simple and rigid syntax
● "Real programmers don't use Pascal", Ed Post, https://www.ee.ryerson.ca/~elf/hack/realmen.html

https://www.ee.ryerson.ca/~elf/hack/realmen.html

 Copyright Stefano Penge CC 4.0 BY/SA 15

Educational languages 2
● A few years later, researchers like Seymour Papert and others started to think of

computer as good environments not only to learn programming, but to learn
everything while programming

● Programming was thought about as having a talk with computers
● Reversing the classical teaching situation, programming was seen as way to

teach to computers (define a function = teach the meaning of a new word)
● Logo language (1967-) was explicitly designed with this approach in mind, to

learn geometry but also to "play with powerful ideas"
● But there were also Alice, Etoy, Squeak, Scratch, Snap!, ToonTalk, Kodu, Kojo, ...

 Copyright Stefano Penge CC 4.0 BY/SA 16

The ideas behind
● To teach a language it is important to know:

– the language itself
– the history (why it was designed in that way? which

problems did it solve? which were the models and
pitfalls to avoid?)

– the limits
– the competitors, the alternatives

 Copyright Stefano Penge CC 4.0 BY/SA 17

Logo by Brian Harvey
● One difference between a Logo microworld and an ordinary piece of educational

software is that in the Logo version, the program itself is available for inspection
and modification, not a black box. In the study of computer science, a
programming language is itself a microworld.

● A crucial part of a Logo classroom is that the learners have permission to explore
using their own individual styles. There isn't just one right way to program

● The irony in all this, as we'd expect from our Logo experience, is that the students
who end up doing best, even in the job market, are the ones who can find the
courage to forget about jobs and grades and jumping through hoops

● https://people.eecs.berkeley.edu/~bh/elogo.html

 Copyright Stefano Penge CC 4.0 BY/SA 18

Scratch by Mitchell Resnick
● One problem was that Logo, like most programming languages, required children to learn

obscure punctuation rules, such as where to put colons and square brackets. This
distracted from the most important ideas and goals of programming.

● We wanted Scratch to engage young people from many different backgrounds and in many
different contexts, including homes, schools, community centers, libraries, and museums.

● We wanted the community to serve as a source of inspiration and feedback: young people
could see what others were creating (and borrow pieces of the code for their own projects),

● […] we had seen that many young people prefer to learn new skills and techniques by
exploring examples rather than following a lesson or tutorial.

● https://medium.com/@mres/10-sparks-that-lit-the-flame-of-scratch-595a27d44334

 Copyright Stefano Penge CC 4.0 BY/SA 19

Problems
● We often find a definition of programming as "implementing an algorithm to

solve a problem"
● This is a simplified vision of programming, as a functional/ practical activity. But

there is much more in programming
● There are programs the do no solve anything but create pieces of art (music,

image, animation, text)
● There are languages invented just for fun: they are the so called "Esoteric

languages"
● Problems arise, and solving problems is a typical developer's task; but it is not

the aim of programming in itself

 Copyright Stefano Penge CC 4.0 BY/SA 20

Digital art
● Art an computers did cross many times in the

past
– Software as painters (Nake, 1960)
– Software as poets (Balestrini, 1961)
– Software as musicians (Gross, 1970: TAUMUS

https://www.codeshow.it/Codici/TAUmus)

https://www.codeshow.it/Codici/TAUmus

 Copyright Stefano Penge CC 4.0 BY/SA 21

Frieder Nake,
1960 ?
Probably with a
Zuse plotter

 Copyright Stefano Penge CC 4.0 BY/SA 22

AI artists
● Xiaoice (2017) is a Microsoft chat boot

capable of conversation and of writing
poems

● 139 of these poems were published

 Copyright Stefano Penge CC 4.0 BY/SA 23

Creativity
● Poems written with ALGOL words (Arnaud 1965

https://www.codeshow.it/Attori/Arnaud)
● Perl Haiku (Wall, Hopskins, 1995

https://www.codeshow.it/Codici/Haiku)
● Esoteric languages

https://www.codeshow.it/Linguaggi/Linguaggi_esoter
ici

https://www.codeshow.it/Attori/Arnaud
https://www.codeshow.it/Codici/Haiku
https://www.codeshow.it/Linguaggi/Linguaggi_esoterici
https://www.codeshow.it/Linguaggi/Linguaggi_esoterici

 Copyright Stefano Penge CC 4.0 BY/SA 24

Esolangs/1: Brainf*ck
 ++++++++++[>+++++++>++++++++++>++
+<<<-]>++.>+.+++++++
 ..+++.>++.<<+++++++++++++++.>.++
+.------.--------.>+.

 Copyright Stefano Penge CC 4.0 BY/SA 25

Esolangs/2: Piet

 Copyright Stefano Penge CC 4.0 BY/SA 26

Esolangs / 3: new ?
● A language composed only with notes and

signs, like: 𝄆 ♩♪♫♬♯ b ¼ 𝄽 𝄾 𝄿 𝄞 𝄢 𝄴 𝄇
● A neapolitan (…) language
● ...

 Copyright Stefano Penge CC 4.0 BY/SA 27

Part III

 Copyright Stefano Penge CC 4.0 BY/SA 28

Why learn to program?
● When teaching programming, often a teacher is blind: since s/he love programming,

also students will love it
● But:

– students don't start learning programming for love of computational thinking
– students should find a personal motivation

● Fun is a great motivation; but programming is difficult and fun could soon disappear
leaving place to frustration and anger

● Find a job is a goal for young adults, but not for children
● ...
● So?

 Copyright Stefano Penge CC 4.0 BY/SA 29

Coding ideas
● Source codes are types of texts
● Programming (= coding) is a sub-type of writing
● Students could learn to use programming language as a way to

express ideas
● Not in same sense in which one write poems or stories, but in

the sense in which one write scenarios or music
● These are special types of text: they are active (or performative)

text, they do things when read by computers

 Copyright Stefano Penge CC 4.0 BY/SA 30

Running models
● Programming is a way to imagine and build a model (a running simulation) of a portion of

the universe
● The reason why we build a digital simulation is that a model is far more cheap, simpler,

faster than reality
● While running (and debugging…) the model, we understand something more about the

universe we are simulating
● We use programming to test an hypothesis

– we have an initial state
– we build some rules
– we put in data
– we stand to see if our rules are powerful enough to represent the final state

 Copyright Stefano Penge CC 4.0 BY/SA 31

Duties and exercises
● Students often do exercises only to get grades
● They don't think of exercises as a way to better learn theories

by practice
● Teachers often assign duties only to assess students, to give

grades
● They don't think of exercises as a way to help student to

understand how to apply in the real case what has been told
in theory

 Copyright Stefano Penge CC 4.0 BY/SA 32

CS exercises
● In the same years in which computers were used to teach,

they were also used to assess students
● Still now, computer assessment is seen as an advantage over

human assessment:
– "computer cannot be wrong"
– they are good at crunching numbers
– they don't get tired after one thousand of exercises

● But this is a really poor way to use computer

 Copyright Stefano Penge CC 4.0 BY/SA 33

Authentic assessment
● Authentic assessment is a vision of assessment in which exercises are as

similar as possible to real problems
● On one hand we have classical closed quiz, with textual questions and a

limited number of possible answers, that are supposed to verify the knowledge
of the theory by the student

● On the other hand, there is the real world, that is more complex than
theoretical world: there is noise, friction, dust, interaction.

● Simulated worlds are somewhere in the middle: we can build them (nearly) as
complicated as we want.

● Inside a simulated world we can to authentic assessment

 Copyright Stefano Penge CC 4.0 BY/SA 34

Meaningful exercises
● CS offers a wonderful way to test a theory
● "Imagine a robot capable of discussing with you" (Eliza, Weizenbaum)
● A real robot is a quite complex thing; but a model of a robot could be just a software writing

sentences
● Building such a software leads to face difficulties:

– limited resources (memory, processors, channels)
– limit of the language (expressiveness, available data structures, ...)
– dirty data
– …

● Deal with limits is one of the original meaning of "computational thinking" as different from
"logic thinking" (Jeannette Wing)

 Copyright Stefano Penge CC 4.0 BY/SA 35

Open artifacts
● A good way to teach programming is perhaps to stay

in the middle:
– use open environments (educational languages)
– but start with something already (partially) running

● Give a stub, a sketch with ideas, expected output,
examples

● But also with some functions, or libraries, to start with

 Copyright Stefano Penge CC 4.0 BY/SA 36

Learning Units
● A learning unit is not a final piece of software, ready, that the student should

use
● It should be a mini-environment in which the student can enter, starting to

see and understand, but that requires an effort to be really useful and
usable

● Programming should be presented as a way to model the world (physical,
biological, linguistic, historical, geographical, mathematical, … world)

● There should be a goal: something unclear to better understand, something
uncertain, or too complex to be understood without a dynamical
representation

 Copyright Stefano Penge CC 4.0 BY/SA 37

The LU Project
● Who:

– the age and class the LU is aimed to
● Why:

– the learning objectives, pre-requisites and motivations respect to the interdisciplinary topic (Math, Physics, Music,
History, Geography, ...)

– the learning objectives, pre-requisites and motivations respect to Programming
● What and when:

– learning materials you give to the students (files and/or pre-programmed functions)
– a description of how the LU will be delivered in class/lab

● How:
– an evaluation grid explaining how the characteristics of project made by the students contribute to the assessment

(sufficient/good/outstanding)

https://twiki.di.uniroma1.it/twiki/view/CSeduA/WebHome

https://twiki.di.uniroma1.it/twiki/view/CSeduA/WebHome

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37

