
One language, more languages

Stefano Penge, may 2022

 Copyright Stefano Penge CC 4.0 By/Sa 2

What is this lesson about
● When teaching CS and programming the teacher should ask him/herself: which language fits the best to my students

competences and to their learning objectives?
● As we saw, there are other, less cognitive aspects, that could play an important role

– personal preferences
– previous experiences,

● There could also be practical aspects:
– a language suggested by the text book already adopted by previous teacher
– a default language that is supposed to be the best choice for that context
– existing interpreters and compilers installed
– availability and quality of network

● But it is always worth the effort to try to imagine if there are alternatives to the default options:
– a specialized language that fits best for certain problem?
– a simpler environment, just to sketch a program before writing a complete version?
– a language the allow for compilation on a mobile device to test it more extensively?

 Copyright Stefano Penge CC 4.0 By/Sa 3

Part I

 Copyright Stefano Penge CC 4.0 By/Sa 4

More languages/1
● In some cases, there could be a good idea not to choose a

single language, but to present multiple options
● When teaching natural languages, sometimes the

teachers use different languages to show the relationship
among languages, or else to make students aware of false
friends

● This is based on the fact the everyone knows at least one
natural language (mother tongue)

 Copyright Stefano Penge CC 4.0 By/Sa 5

vetro glass verre
bicchiere glass verre
specchio glass miroir
occhiali glasses lunettes

switch select case
case when when
def function defn
repeat do begin
until while end while

Could you do the same for programming languages?

 Copyright Stefano Penge CC 4.0 By/Sa 6

More languages/2
● There are a lot of resources on the web where one can compare

implementation of the same algorithm in different languages
– Rosetta Code

http://rosettacode.org/wiki/Rosetta_Code
– 99 bottles of beer

http://99-bottles-of-beer.net/
– Hello, World!

http://helloworldcollection.de/

http://rosettacode.org/wiki/Rosetta_Code
http://99-bottles-of-beer.net/
http://helloworldcollection.de/

 Copyright Stefano Penge CC 4.0 By/Sa 7

Ingredients.
72 g haricot beans
101 eggs
108 g lard
111 cups oil
32 zucchinis
119 ml water
114 g red salmon
100 g dijon mustard
33 potatoes

Method.
Put potatoes into the mixing bowl. Put dijon mustard into the mixing bowl. Put
lard into the mixing bowl. Put red salmon into the mixing bowl. Put oil into
the mixing bowl. Put water into the mixing bowl. Put zucchinis into the mixing
bowl. Put oil into the mixing bowl. Put lard into the mixing bowl. Put lard
into the mixing bowl. Put eggs into the mixing bowl. Put haricot beans into
the mixing bowl. Liquefy contents of the mixing bowl. Pour contents of the
mixing bowl into the baking dish.

Serves 1.

 Copyright Stefano Penge CC 4.0 By/Sa 8

Ingredients.
72 g haricot beans
101 eggs
108 g lard
111 cups oil
32 zucchinis
119 ml water
114 g red salmon
100 g dijon mustard
33 potatoes

Method.
Put potatoes into the mixing bowl. Put dijon mustard into the mixing bowl. Put
lard into the mixing bowl. Put red salmon into the mixing bowl. Put oil into
the mixing bowl. Put water into the mixing bowl. Put zucchinis into the mixing
bowl. Put oil into the mixing bowl. Put lard into the mixing bowl. Put lard
into the mixing bowl. Put eggs into the mixing bowl. Put haricot beans into
the mixing bowl. Liquefy contents of the mixing bowl. Pour contents of the
mixing bowl into the baking dish.

Serves 1.

https://www.dangermouse.net/esoteric/chef.html

http://bogost.com/teaching/introduction_to_computational/

https://metacpan.org/release/SMUELLER/Acme-Chef-1.01

 Copyright Stefano Penge CC 4.0 By/Sa 9

The project
● We want to write a simple program capable of creating little stories.
● There are several ways to design such a program (rewriting

grammar, L-system)
● The simplest one is probably to use a template, like in the "cloze"

quizzes.
● We will build a template, we will create different list of words and

we will ask the computer to fill the template choosing randomly
words from the lists.

 Copyright Stefano Penge CC 4.0 By/Sa 10

Didactic method
● Before starting to write code, or even to design the program, there is a need

to explore the domain through a series of questions and research activities:
– Which is a structured text? How many types do you know? Give an example
– How are structured texts produced by human writers?
– Is it possible to write them automatically?
– Look at this: https://www.plot-generator.org.uk/story/
– What a program should know to write a text?
– How can you tell if a text is produced by a human or by a software?
– ...

https://www.plot-generator.org.uk/story/

 Copyright Stefano Penge CC 4.0 By/Sa 11

Learning goals/1
● From the CS point of view:

– different types of data structures
– selecting data
– string interpolation
– function, recursion, …
– categories of languages

 Copyright Stefano Penge CC 4.0 By/Sa 12

Learning goals/2
● From the disciplinary point of view:

– structured text (fairy tales, jokes, poems)
– grammar categories
– lexicon
– generative rules

 Copyright Stefano Penge CC 4.0 By/Sa 13

Difficulties
● Probably the only true difficulty is the one related to the use of the

words:
– how to keep some coherence among words (eg. knights and dragons

should go together)?
– how to keep the binding between a role and word through the story?

● The data structure can be dispersed or unique
● The main program could be a simple iteration on the template's

lines; or could be a recursive function that "consumes" the template
polling from the lists until the end

 Copyright Stefano Penge CC 4.0 By/Sa 14

The template
1)There was once upon a time a <hero> striving for <kingdom>
2)Our <hero> was in quest for a <treasure>
3)After a long travel through <lands> the <hero> suddenly faced an enormous

<opponent>
4)The <opponent> tried to <attack> the <hero>, but without success
5)Then it was the <hero> turn to <attack> the <opponent>; and so they went on and

on for all the <duration>
6)Then, oh wonder!, the <opponent> was won and <subdued>
7)At the end of the adventure, the <hero> couldn't get the kingdom, because of

<surprise>.

 Copyright Stefano Penge CC 4.0 By/Sa 15

Word lists
1) hero (noun): knight, dwarf, singer, youtuber, ...
2) treasure (noun): crown, unique ring, cup of icecream, ...
3) kingdom (noun): Xanadu, Eurovision, Atlantide
4) lands (noun): desert, forest, supermarket, downtown, ...
5) opponent (noun): dragon, giant, Godzilla,
6) attack (verb infinitive): fire, disintegrate, hypnotize, ...
7) duration (noun): day, week, season
8) subdued (verb participle): tied to a tree, chained to a column, buried under a pyramid
9) surprise (noun): ...

 Copyright Stefano Penge CC 4.0 By/Sa 16

Coherence
● All the magics stays in a clever choice of words
● One should define categories inside role lists to try to keep vertical

coherence
● Each categories should contains standard substitutions for the

blanks, but also stranger candidates that could mess up the story
● Depending on the context (age of the students, type of the text to

be built) the more the story is surprising, the more the students will
be intrigued

 Copyright Stefano Penge CC 4.0 By/Sa 17

Judging
● The class could be divided in three teams, each of which using a different language
● Someone (other teachers? a group of students from another class? parents?)

should be appointed as external judges to vote the best implementation (= the best
story)

● Every teamwork could be voted on different parameters:
– the most creative
– the funniest
– the scariest
– …

● These are not judgment on the code, but on the final result.

 Copyright Stefano Penge CC 4.0 By/Sa 18

Part II

 Copyright Stefano Penge CC 4.0 By/Sa 19

Which languages
● Here follows three examples of implementation in

different languages
● The idea is to use the main characteristics of each

language and use the example to underline them
● The examples are inspired by those published in

chapter 2 of Lingua, Coding e creatività, Anicia, 2017

 Copyright Stefano Penge CC 4.0 By/Sa 20

TO hero
OUTPUT PICK [knight dwarf singer]

END

TO kingdom
OUTPUT PICK [Xanadu Eurovision Atlantis]

END

TO treasure
OUTPUT PICK [crown ring icecream]

END

TO step1 :hero :kingdom
OUTPUT SENTENCE [There was once upon a time a] :hero [striving for

a] :kingdom
END

TO step2 :hero :treasure
OUTPUT SENTENCE [Our hero was in quest for a] :treasure

END

 Copyright Stefano Penge CC 4.0 By/Sa 21

TO tellAstory :story
IF EMPTYP :story [STOP]
PRINT RUN FIRST :story
tellAStory BUTFIRST :story

END

TO start
tellAStory [[step1 hero kingdom] [step2 hero treasure]]

END

 Copyright Stefano Penge CC 4.0 By/Sa 22

Logo
● The first one (Logo) is really basic: there are a series of identical

functions that output a randomly chosen element and one function per
story-step to bind the character to his role in the sentence

● A recursive main function is used to build the story
● The teacher could underline that there is no global variable
● Upgrade: could we use the MAP construct to apply the templates to the

characters list?
● The Logo dialect used here is UCB; here is shown the Trace feature in

FMSLogo for Windows

 Copyright Stefano Penge CC 4.0 By/Sa 23

 Copyright Stefano Penge CC 4.0 By/Sa 24

import scala.util.Random

class Story_Teller {

val vocabulary = Map (
 "hero"->Array(" knight "," dwarf "," singer "),
 "kingdom"->Array("Xanadu "," Eurovision "," Atlantis"),
 "treasure"->Array("crown "," unique ring "," cup of icecream ")
)

val templates = Map (
 "There was once upon a time a %s, "->"hero",
 "striving for %s "->"kingdom",
 ", that was in quest for a %s "->"treasure"
)

 Copyright Stefano Penge CC 4.0 By/Sa 25

def pick (voc: String) : String = {
 vocabulary(voc)(Random.nextInt(vocabulary(voc).length))
}

def fill_the_role (sentence: String, role : String) : String = {
 sentence.format(pick(role))
}

def tell_a_story {
 templates.foreach { case (sentence,role) =>
 print(fill_the_role(sentence,role))
 }
}
} // end class Story_Teller

val a_story_teller = new Story_Teller
a_story_teller.tell_a_story

 Copyright Stefano Penge CC 4.0 By/Sa 26

Kojo
● This version is a little bit complex, since it uses class, data structures (Map

type) for templates and roles and a foreach/case to navigate in them
● It show a data driven approach, that makes it simpler to enrich the code

with new template and new characters
● In this version, there is no control about the persistence of the binding

role/character through the program
● There is also a limitation in the number of variables per sentences, due to

the implementation through the "old Java style" interpolation mechanism
● Upgrade: make it work!

 Copyright Stefano Penge CC 4.0 By/Sa 27

 Copyright Stefano Penge CC 4.0 By/Sa 28

hero(knight).

hero(dwarf).

hero(singer).

kingdom("Xanadu").

kingdom("Eurovision").

kingdom("Atlantis").

treasure(crown).

treasure("unique ring").

treasure("cup of icecream").

 Copyright Stefano Penge CC 4.0 By/Sa 29

step1(Hero,Kingdom,Step):-
hero(Hero),
kingdom(Kingdom),

 append(['There was a',Hero],['striving for',Kingdom],Step).

step2(Hero,Treasure,Step):-
 hero(Hero),
 treasure(Treasure),
 append(['Our',Hero],['was in quest for a',Treasure],Step).

tellAStory:-

step1(_,_,Step1),
step2(_,_,Step2),
append(Step1,Step2,Story),

 writeln(Story),
 fail.

 Copyright Stefano Penge CC 4.0 By/Sa 30

Prolog
● The third one has a typical Prolog structure with all facts

stated at the beginning and a rule for every sentence.
Thank to the unification mechanism, it is not necessary to
bother about the bindings of roles.

● The main predicate finds all the stories and prints them,
thanks to fail predicate.

● Upgrade: let the predicate randomly choose a single story
using ! (cut)

 Copyright Stefano Penge CC 4.0 By/Sa 31

 Copyright Stefano Penge CC 4.0 By/Sa 32

Part III

 Copyright Stefano Penge CC 4.0 By/Sa 33

Comparison/1
● Which parameters can be used by the teacher to

compare the three versions?
– adequacy to the project goals
– readability
– conciseness
– extensibility
– … ?

 Copyright Stefano Penge CC 4.0 By/Sa 34

Comparison/2
● Which parameter can be used by the students to

compare the three versions?
– "this one was simpler to read/write" (= less words to

type, less errors)
– "this one seems a true program"
– "this one was easy to debug"
– … ?

 Copyright Stefano Penge CC 4.0 By/Sa 35

Other versions
● Which language could be added to the list?
● Why?
● Could you think about a version in some visual

language? Which one?
– Which could be the advantages for the CS concepts

learning?
– Which could be other advantages?

 Copyright Stefano Penge CC 4.0 By/Sa 36

Other activities
● How about changing the template and the word list to

generate a different kind of text (a recipe, a wikipedia
article, a poem, a love letter, an advertising, …)?

● How about generating automatically the template?
● Could we organize a "Turing game" among two

teams, to see which one is able to write a program
that write a text that seems human-written?

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36

