
A naïve lesson on Recursion
Stefano Penge, may 2022

Réné Magritte, Clairvoyance, 1936

 Copyright Stefano Penge CC 4.0 BY/SA 2

Why
● Why one should teach recursive algorithms to

students?
● Since "to explain" means "to put in relation

something new with something known", which kind
of previous experience should one exploit?

● Do normal people already know something about
recursion?

 Copyright Stefano Penge CC 4.0 BY/SA 3

 Copyright Stefano Penge CC 4.0 BY/SA 4

Recursion in everyday life
● Romanesco broccoli
● Sourdough
● Language ("Mary thinks that John thinks that..")
● Pictures (Droste effects)
● Humour (well, programmers' humor: recursive acronyms like

 GNU)
● Reproduction

https://en.wikipedia.org/wiki/Recursion

 Copyright Stefano Penge CC 4.0 BY/SA 5

Recursive algorithms
● The classical explanation of recursion and iteration is "Trading elegance for

efficiency".
● It starts with the informal idea of something defined in terms of self
● This should be impossible or lead to an infinite loop; but there are some conditions

under which the loop halts.
● The explanation continues with some examples taken from mathematics: Fibonacci

numbers, factorials, … these are all concepts defined in terms of themselves
● For example, the definition of factorial is:

– n! = (n-1)! * n ("the factorial of n equals the factorial of n less 1 times n")
● n! appears on right side of definition, where normally it should not be

https://it.wikipedia.org/wiki/Algoritmo_ricorsivo

 Copyright Stefano Penge CC 4.0 BY/SA 6

Recursive algorithms
An iterative implementation:

Factorial (n):
{

fact = 1;
while (1 < = n) {

 fact = fact * n;
 n --;

 }
 return fact;
}

A recursive implementation:

RFactorial (n):
{
 if (n < = 1) return 1;
 return n * RFactorial (n-1);
}

 Copyright Stefano Penge CC 4.0 BY/SA 7

Differences
● The two versions are not so different in size
● The iterative version start from the end (n) and goes

backward to 1 while calculating
● The recursive version first goes back to 1 and then

goes forward to n while calculating
● The fact that the recursive version maintain a local

knowledge (its state) is not so evident

 Copyright Stefano Penge CC 4.0 BY/SA 8

Problems
● Factorial is a complex concept, that cannot be

used to explain recursion to young pupils
● What is the interest to find Fact(9)?
● In any case, this is an explanation of the

implementation of a mathematics function
which is already recursive in itself

 Copyright Stefano Penge CC 4.0 BY/SA 9

Recursive problems
● Recursive problems are those in which:

– there is ramification
– the solution could be anywhere in the space

● Generally speaking, it seems that there are problems that
are well suited for a recursive implementation (trees,
labyrinth,..) and problems which are not (sequences)

● But it depends on the manner in which we represent data

 Copyright Stefano Penge CC 4.0 BY/SA 10

 Copyright Stefano Penge CC 4.0 BY/SA 11

The Data

1

3

5 7

9 11 13 14

 Copyright Stefano Penge CC 4.0 BY/SA 12

A classical representation
● 4 lists of nodes (=paths)

– 1,3,5,9
– 1,3,5,11
– 1,3,7,13
– 1,3,7,14

● The function that checks for solution(s) is simply:
– isEven(x)?

 Copyright Stefano Penge CC 4.0 BY/SA 13

Another classical representation
● A list of couples: "parent", "son":

– 1,3
– 3,5
– 3,7
– 5,9
– 5,11
– 7,13
– 7,14

 Copyright Stefano Penge CC 4.0 BY/SA 14

The programs
● Iterative

– for each path:
● for each node of the path

– check if it is the solution
● if there aren't more path to check, fail

● Recursive
– take a couple x,y
– check if y (= son of x) is the solution

● if yes, exit
● if no,

– if there are no more couples, exit
● find another couple that has y as parent and start again

 Copyright Stefano Penge CC 4.0 BY/SA 15

Knowledge of the world
● Iteration algorithms have a complete knowledge of the world
● Recursive algorithm knows nothing about the world
● From this point of view, they are a little bit more intelligent: they try to find

their way alone
● From the point of teacher, it is important to mark the difference and explain

recursion on the basis of which amount of knowledge the algorithm has
● Recursive implementations make sense when the algorithm don't have a

complete knowledge of the world
● A good example could be the research activity

 Copyright Stefano Penge CC 4.0 BY/SA 16

Research
● When doing research, we don't have a full knowledge of

the world; we have hypotheses, theory, but still not
knowledge

● We have only some portion of it (perhaps thanks to
sensors, which are doors between real world and digital
world)

● But to explain recursion to students in a real research field
could be difficult...

 Copyright Stefano Penge CC 4.0 BY/SA 17

 Copyright Stefano Penge CC 4.0 BY/SA 18

Games
● When programming a game there are two types of knowledge:

– the knowledge of the universe, which is complete and in the hands of
designer who imagine that universe

– the knowledge of the agents, which is dynamic and change during the
game

● During game the agents explore the universe, i.e. they extend their
knowledge towards the limit of global knowledge

● In this context, recursion is a natural option because it is a natural
way of representing the partial knowledge of each agent

 Copyright Stefano Penge CC 4.0 BY/SA 19

Matryoshka dolls

Invented in XIX
century in Russia by

Zvyozdochkin
(craftsman) and

Malyutin (painter)

 Copyright Stefano Penge CC 4.0 BY/SA 20

The M-Game
● A Matryoshka wants to find a treasure
● We (the programmers) design the world as a dungeon, a tree, or

whatever
● The Matryoshka knows how to recognize a treasure, but doesn't

know where the treasure is; but we know
● The Matryoshka has some limits: she cannot do more than ONE

step at a time
● But she can produce unlimited little Matryoshkas...

 Copyright Stefano Penge CC 4.0 BY/SA 21

The Matryoshka program
● Matryoshka thinks:

– "A solution is an even number"
– "If I found an even number, I report it back to my

Mother"
– "If not, I will check how many path stems from here

and I produce a Daughter to which I give the same
task"

 Copyright Stefano Penge CC 4.0 BY/SA 22

Advantages
● Every Matryoshka has a limited knowledge of the

tree (a "state"), which is specific and not shared with
other Matryoshka

● It is easy to show a version of the program with real
wooden Matryoshkas

● The idea of a doll bearing inside another doll is
familiar to humans: its name is pregnancy

 Copyright Stefano Penge CC 4.0 BY/SA 23

Implementation
● There could be good implementations of this

game using clones in Scratch or Snap! :
● https://en.scratch-wiki.info/wiki/Advanced_Clon

e_Usage
● https://snap.berkeley.edu/snap/help/SnapManu

al.pdf
pages 70-74

https://en.scratch-wiki.info/wiki/Advanced_Clone_Usage
https://en.scratch-wiki.info/wiki/Advanced_Clone_Usage
https://snap.berkeley.edu/snap/help/SnapManual.pdf
https://snap.berkeley.edu/snap/help/SnapManual.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23

