A naive lesson on Recursion
Stefano Penge, may 2022

@ ¥

Réné Magritte, Clairvoyance, 1936

Why

* Why one should teach recursive algorithms to
students?

* Since "to explain” means "to put in relation
something new with something known", which kind
of previous experience should one exploit?

* Do normal people already know something about
recursion?

Copyright Stefano Penge CC 4.0 BY/SA

.... ..u H.lw.ﬂ.m.._ ."W.lnlu...-_.. :..11...- -

L v v by i,
o e AR
T e :

.F._.........

L
e T

Recursion in everyday life

Romanesco broccol

Sourdough

Language ("Mary thinks that John thinks that..")
Pictures (Droste effects)

Humour (well, programmers' humor: recursive acronyms like
GNU)

Reproduction

https://en.wikipedia.org/wiki/Recursion
Copyright Stefano Penge CC 4.0 BY/SA 4

Recursive algorithms

* The classical explanation of recursion and iteration is "Trading elegance for
efficiency".

* It starts with the informal idea of something defined in terms of self

» This should be impossible or lead to an infinite loop; but there are some conditions
under which the loop halts.

* The explanation continues with some examples taken from mathematics: Fibonacci
numbers, factorials, ... these are all concepts defined in terms of themselves

* For example, the definition of factorial is:
- n!=(n-1)! * n ("the factorial of n equals the factorial of n less 1 times n")

* n! appears on right side of definition, where normally it should not be
https://it.wikipedia.org/wiki/Algoritmo_ricorsivo

Copyright Stefano Penge CC 4.0 BY/SA

Recursive algorithms

An iterative implementation: A recursive implementation:
Factorial (n): RFactorial (n):
{ {
fact = 1; if (n<=1)return 1,
while (1 <=n){ return n * RFactorial (n-1);
fact = fact * n; }
n--
}

return fact;

Copyright Stefano Penge CC 4.0 BY/SA

Differences

e The two versions are not so different in size

* The iterative version start from the end (n) and goes
backward to 1 while calculating

* The recursive version first goes back to 1 and then
goes forward to n while calculating

e The fact that the recursive version maintain a local
knowledge (its state) is not so evident

Copyright Stefano Penge CC 4.0 BY/SA

Problems
* Factorial is a complex concept, that cannot be
used to explain recursion to young pupils
* What is the interest to find Fact(9)?

* In any case, this is an explanation of the
Implementation of a mathematics function
which Is already recursive In itself

Copyright Stefano Penge CC 4.0 BY/SA

Recursive problems

* Recursive problems are those in which:
- there is ramification
- the solution could be anywhere in the space

* Generally speaking, it seems that there are problems that
are well suited for a recursive implementation (trees,
labyrinth,..) and problems which are not (sequences)

* But it depends on the manner in which we represent data

Copyright Stefano Penge CC 4.0 BY/SA 9

The Data

1

Copyright Stefano Penge CC 4.0 BY/SA

11

A classical representation

* 4 lists of nodes (=paths)
- 1,3,5,9
- 1,3,5,11
- 1,3,7,13
- 1,3,7,14
* The function that checks for solution(s) is simply:
- Iseven(x)?

Copyright Stefano Penge CC 4.0 BY/SA

12

Another classical representation

* Alist of couples: "parent”, "son":
- 1,3
- 35
- 3,7
- 59
- 5,11
- 7,13
- 7,14

Copyright Stefano Penge CC 4.0 BY/SA

13

The programs

e |terative

— for each path:

« for each node of the path
- check if it is the solution

* if there aren't more path to check, fail

* Recursive
- take a couple x,y

- check if y (= son of x) is the solution
* if yes, exit
* if no,
- if there are no more couples, exit
« find another couple that has y as parent and start again

Copyright Stefano Penge CC 4.0 BY/SA

14

Knowledge of the world

Iteration algorithms have a complete knowledge of the world
Recursive algorithm knows nothing about the world

From this point of view, they are a little bit more intelligent: they try to find
their way alone

From the point of teacher, it is important to mark the difference and explain
recursion on the basis of which amount of knowledge the algorithm has

Recursive implementations make sense when the algorithm don't have a
complete knowledge of the world

A good example could be the research activity

Copyright Stefano Penge CC 4.0 BY/SA 15

Research

* When doing research, we don't have a full knowledge of
the world; we have hypotheses, theory, but still not
knowledge

* We have only some portion of it (perhaps thanks to
sensors, which are doors between real world and digital
world)

* But to explain recursion to students in a real research field
could be difficult...

Copyright Stefano Penge CC 4.0 BY/SA 16

2k

18:3(0

12

e

[

.
*

-5

g =t
_

= =5t

-

-

\

R A :

A\ Y

e AR

——

e

—
AR m».ﬂ(rﬂ.ﬁ.ifiﬁ.

Games

* When programming a game there are two types of knowledge:
- the knowledge of the universe, which is complete and in the hands of
designer who imagine that universe
- the knowledge of the agents, which is dynamic and change during the
game
 During game the agents explore the universe, i.e. they extend their
knowledge towards the limit of global knowledge

* In this context, recursion is a natural option because it is a natural
way of representing the partial knowledge of each agent

Copyright Stefano Penge CC 4.0 BY/SA 18

Matryoshka dolls

Invented in XIX
century in Russia by
Zvyozdochkin
(craftsman) and
Malyutin (painter)

Copyright Stefano Penge CC 4.0 BY/SA 19

The M-Game

* A Matryoshka wants to find a treasure

* We (the programmers) design the world as a dungeon, a tree, or
whatever

* The Matryoshka knows how to recognize a treasure, but doesn't
know where the treasure is; but we know

* The Matryoshka has some limits: she cannot do more than ONE
step at a time

* But she can produce unlimited little Matryoshkas...

Copyright Stefano Penge CC 4.0 BY/SA 20

The Matryoshka program

* Matryoshka thinks:
- "A solution I1s an even number"

- "If | found an even number, | report it back to my
Mother"

- "If not, I will check how many path stems from here
and | produce a Daughter to which | give the same
task"

Copyright Stefano Penge CC 4.0 BY/SA

21

Advantages

* Every Matryoshka has a limited knowledge of the
tree (a "state"), which is specific and not shared with

other Matryoshka

* It Is easy to show a version of the program with real
wooden Matryoshkas

* The idea of a doll bearing inside another doll is
familiar to humans: its name Is pregnancy

Copyright Stefano Penge CC 4.0 BY/SA 22

Implementation

* There could be good implementations of this
game using clones in Scratch or Snap! :

* https://en.scratch-wiki.info/wiki/Advanced_ Clon
e Usage

. hlttpgl:c//snap.berkeley.edu/snap/help/SnapI\/Ianu
al.p

pages /0-74

Copyright Stefano Penge CC 4.0 BY/SA

23

https://en.scratch-wiki.info/wiki/Advanced_Clone_Usage
https://en.scratch-wiki.info/wiki/Advanced_Clone_Usage
https://snap.berkeley.edu/snap/help/SnapManual.pdf
https://snap.berkeley.edu/snap/help/SnapManual.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23

